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Abstract

This package vignette is an up-to-date version of Alfons and Templ (2013), published
in the Journal of Statistical Software.

Units sampled from finite populations typically come with different inclusion proba-
bilities. Together with additional preprocessing steps of the raw data, this yields unequal
sampling weights of the observations. Whenever indicators are estimated from such com-
plex samples, the corresponding sampling weights have to be taken into account. In
addition, many indicators suffer from a strong influence of outliers, which are a common
problem in real-world data. The R package laeken is an object-oriented toolkit for the
estimation of indicators from complex survey samples via standard or robust methods.
In particular the most widely used social exclusion and poverty indicators are imple-
mented in the package. A general calibrated bootstrap method to estimate the variance
of indicators for common survey designs is included as well. Furthermore, the package
contains synthetically generated close-to-reality data for the European Union Statistics
on Income and Living Conditions and the Structure of Earnings Survey, which are used in
the code examples throughout the paper. Even though the paper is focused on showing
the functionality of package laeken, it also provides a brief mathematical description of
the implemented indicator methodology.
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1. Introduction

Estimation of indicators is one of the main tasks in survey statistics. They are usually
estimated from complex surveys with many thousands of observations, conducted in a har-
monized manner over many countries. Indicators are designed to reflect major developments
in society, for example with respect to poverty, social cohesion or gender inequality, in order
to quantify and monitor progress towards policy objectives. Moreover, by implementing a
monitoring system across countries via a harmonized set of indicators, different policies can
be compared based on quantitative information regarding their impact on society. Thus sta-
tistical indicators are an important source of information on which policy makers can base
their decisions.
Nevertheless, for policy decisions to be effective, the underlying quantitative information from
the indicators needs to be reliable. Not only should the variability of the indicators be kept
in mind, but also the impact of data collection and preprocessing needs to be considered.
Indicators are typically based on complex surveys, in which units are drawn from finite popu-
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lations, most often with unequal inclusion probabilities. Hence the observations in the sample
represent different numbers of units in the population, giving them unequal sample weights.
In addition, those initial weights are often modified by preprocessing steps such as calibra-
tion for nonresponse. Therefore, sample weights always need to be taken into account in the
estimation of indicators from survey samples, otherwise the estimates may be biased.
The focus of this paper is on socioeconomic indicators on poverty, social cohesion and gender
differences. In economic data, extreme outliers are a common problem. Such outliers can
have a disproportionally large influence on the estimates of indicators and may completely
distort them. If indicators are corrupted by outliers, wrong conclusions could be drawn by
policy makers. Robust estimators that give reliable estimates even in the presence of extreme
outliers are therefore necessary.
We introduce the add-on package laeken (Alfons, Holzer, and Templ 2013a) for the open
source statistical computing environment R (R Development Core Team 2013). It provides
functionality for standard and robust estimation of indicators on social exclusion and poverty
from complex survey samples. The aim of the paper is to present the most important func-
tionality of the package.
A more complete overview of the available functionality is given in additional package vi-
gnettes on specialized topics. A list of the available vignettes can be viewed from within R
with the following command:

R> vignette(package="laeken")

Even though official statistical agencies usually rely on commercial software, R has gained
some traction in the survey statistics community over the years. Various add-on packages
for survey methodology are now available. For instance, an extensive collection of methods
for the analysis of survey samples is implemented in package survey (Lumley 2004, 2012).
The accompanying book by Lumley (2010) also serves as an excellent introduction to survey
statistics with R. Other examples for more specialized functionality are package sampling
(Tillé and Matei 2012) for finite population sampling, and package EVER (Zardetto 2012) for
variance estimation based on efficient resampling. For the common problem of nonresponse,
package VIM (Templ, Alfons, Kowarik, and Prantner 2013) allows to explore the structure
of missing data via visualization techniques (see Templ, Alfons, and Filzmoser 2012), and
to impute the missing values via advanced imputation methods (e.g., Templ, Kowarik, and
Filzmoser 2011). Even a general framework for simulation studies in survey statistics is
available through package simFrame (Alfons, Templ, and Filzmoser 2010; Alfons 2012).
Package laeken provides functionality for the estimation of indicators that is not available in
any of the packages listed above, including a novel approach for robust estimation of indica-
tors. While packages survey and EVER require the generation of certain objects describing
the survey design prior to analysis, the methods in laeken can be directly applied to the data.
This allows laeken to be used more efficiently in simulations, for instance with the simFrame
framework. Furthermore, laeken can easily be used on samples drawn with the sampling
package or preprocessed with the VIM package.
The rest of the paper is organized as follows. Section 2 introduces the data sets that are
used in the examples throughout the paper. In Section 3, the most widely used indicators
on social exclusion and poverty are briefly described. The basic design of the package and
its core functionality are then presented in Section 4. More advanced topics such as robust



Andreas Alfons, Matthias Templ 3

estimation and variance estimation via bootstrap techniques are discussed in Sections 5 and 6,
respectively. The final Section 7 concludes.

2. Data sets
Package laeken contains example data sets for two well-known surveys: the European Union
Statistics on Income and Living Conditions (EU-SILC) and the Structure of Earnings Survey
(SES). Since original data from those surveys are confidential, the example data sets are
simulated using the methodology described in Alfons, Kraft, Templ, and Filzmoser (2011)
and implemented in the R package simPopulation (Alfons and Kraft 2012). Such close-to-
reality data sets provide nearly the same multivariate structure as the confidential original
data sets and allow researchers to test and compare methods. However, for policy making
purposes and economic interpretation, estimations need to be based on the original data. In
any case, the simulated data sets are used in the code examples throughout the paper.

2.1. European Union Statistics on Income and Living Conditions

EU-SILC is an annual household survey conducted in EU member states and other European
countries. Samples consist of about 450 variables containing information on demographics,
income and living conditions (see Eurostat 2004b). Most notably, EU-SILC serves as data
basis for measuring risk-of-poverty and social cohesion in Europe. A subset of the indicators
computed from EU-SILC is presented in Section 3.2.
The EU-SILC example data set in laeken is called eusilc and contains 14 827 observations
from 6 000 households on the 28 most important variables. The data are synthetically gener-
ated from preprocessed Austrian EU-SILC data from 2006 provided by Statistics Austria. A
description of all the variables is given in the R help page of the data set. To give an overview
of what the data look like, the first three observations of the first ten variables of eusilc are
printed below.

R> data("eusilc")
R> head(eusilc[, 1:10], 3)

db030 hsize db040 rb030 age rb090 pl030 pb220a py010n py050n
1 1 3 Tyrol 101 34 female 2 AT 9756.25 0
2 1 3 Tyrol 102 39 male 1 Other 12471.60 0
3 1 3 Tyrol 103 2 male <NA> <NA> NA NA

For this paper, the variable eqIncome (equivalized disposable income) is of main interest.
Other variables are in some cases used to break down the data into different demographics in
order to estimate the indicators on those subsets.

2.2. Structure of Earnings Survey

The Structure of Earnings Survey (SES) (Eurostat 2006) is an enterprise survey that aims
at providing harmonized data on earnings for almost all European countries. SES data not
only contain information on the enterprise level, but also on the individual employment level
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from a large sample of employees. The most important indicator on the basis of SES data is
the gender pay gap, which is described in Section 3.3.
The SES example data set in laeken is called ses and contains information on 27 variables and
15 691 employees from 500 places of work. It is a subset of synthetic data that are simulated
from preprocessed Austrian SES 2006 data provided by Statistics Austria. The first three
observations of the first seven variables are shown below.

R> data("ses")
R> head(ses[, 1:7], 3)

location NACE1 size economicFinanc payAgreement IDunit sex
112 AT3 C-Mining E1000 B B 81461 male
111 AT3 C-Mining E1000 B B 81461 male
114 AT3 C-Mining E1000 B B 81461 male

In this paper, the SES data is used to illustrate the estimation of the gender pay gap. Hence
the most important variables for our purposes are earningsHour, sex and education. For a
description of all the variables in the data set, the reader is referred to its R help page.

3. Indicators
This section gives a brief description of the most widely used indicators on poverty, social
cohesion and gender differences. Unless otherwise stated, the presented definitions strictly
follow Eurostat (2004a, 2009). While quick examples for their computation are provided in
this section, a detailed discussion on the respective functions is given later on in Section 4.

3.1. Weighted median and quantile estimation

Nearly all of the indicators considered in the paper require the estimation of the median
income or other quantiles of the income distribution. Note that in the analysis of income
distributions, the median income is of higher interest than the arithmetic mean, since income
distributions typically are strongly right-skewed.
In mathematical terms, quantiles are defined as qp := F −1(p), where F is the distribution
function on the population level and 0 ≤ p ≤ 1. The median as an important special case
is given by p = 0.5. For the following definitions, let n be the number of observations in
the sample, let x := (x1, . . . , xn)⊤ denote the income with x1 ≤ . . . ≤ xn, and let w :=
(wi, . . . , wn)⊤ be the corresponding sample weights. Weighted quantiles for the estimation of
the population values are then given by

q̂p = q̂p(x, w) :=
{1

2(xj + xj+1), if ∑j
i=1 wi = p

∑n
i=1 wi,

xj+1, if ∑j
i=1 wi < p

∑n
i=1 wi <

∑j+1
i=1 wi.

(1)

3.2. Indicators on social exclusion and poverty

The indicators described in this section are estimated from EU-SILC data based on household
income rather than personal income. For each person, this equivalized disposable income is
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defined as the total household disposable income divided by the equivalized household size.
It follows that each person in the same household receives the same equivalized disposable
income. The total disposable income of a household is thereby calculated by adding together
the personal income received by all of the household members plus the income received at the
household level. The equivalized household size is defined according to the modified OECD
scale, which gives a weight of 1.0 to the first adult, 0.5 to other household members aged 14
or over, and 0.3 to household members aged less than 14.
For the definitions of the following indicators, let x := (x1, . . . , xn)⊤ be the equivalized
disposable income with x1 ≤ . . . ≤ xn and let w := (wi, . . . , wn)⊤ be the corresponding sample
weights, where n denotes the number of observations. Furthermore, define the following index
sets for a certain threshold t:

I<t := {i ∈ {1, . . . , n} : xi < t}, (2)
I≤t := {i ∈ {1, . . . , n} : xi ≤ t}, (3)
I>t := {i ∈ {1, . . . , n} : xi > t}. (4)

At-risk-at-poverty rate

In order to define the at-risk-of-poverty rate (ARPR), the at-risk-of-poverty threshold (ARPT)
needs to be introduced first, which is set at 60% of the national median equivalized disposable
income. Then the at-risk-at-poverty rate is defined as the proportion of persons with an
equivalized disposable income below the at-risk-at-poverty threshold. In a more mathematical
notation, the at-risk-at-poverty rate is defined as

ARPR := P (x < 0.6 · q0.5) · 100, (5)

where q0.5 := F −1(0.5) denotes the population median (50% quantile) and F is the distribution
function of the equivalized income on the population level.
For the estimation of the at-risk-at-poverty rate from a sample, first the at-risk-at-poverty
threshold is estimated by

ÂRPT = 0.6 · q̂0.5, (6)
where q̂0.5 is the weighted median as defined in Equation 1. Then the at-risk-at-poverty rate
can be estimated by

ÂRPR :=
∑

i∈I
<ÂRP T

wi∑n
i=1 wi

· 100, (7)

where I
<ÂRP T

is an index set of persons with an equivalized disposable income below the
estimated at-risk-of-poverty threshold as defined in Equation 2.
In package laeken, the function arpr() is implemented to estimate the at-risk-at-poverty rate.

R> arpr("eqIncome", weights = "rb050", data = eusilc)

Value:
[1] 14.44422

Threshold:
[1] 10859.24
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Note that the at-risk-of-poverty threshold is computed internally by arpr(). If necessary, it
can also be computed by the user through function arpt().
In addition, a highly related indicator is the dispersion around the at-risk-of-poverty threshold,
which is defined as the proportion of persons with an equivalized disposable income below
40%, 50% and 70% of the national weighted median equivalized disposable income. For the
estimation of this indicator with function arpr(), the proportion of the median equivalized
income to be used can easily be adjusted via the argument p.

R> arpr("eqIncome", weights = "rb050", p = c(0.4, 0.5, 0.7), data = eusilc)

Value:
40% 50% 70%

4.766885 7.988134 21.856379

Threshold:
40% 50% 70%

7239.491 9049.363 12669.109

Quintile share ratio

The income quintile share ratio (QSR) is defined as the ratio of the sum of the equivalized dis-
posable income received by the 20% of the population with the highest equivalized disposable
income to that received by the 20% of the population with the lowest equivalized disposable
income.
For a given sample, let q̂0.2 and q̂0.8 denote the weighted 20% and 80% quantiles, respectively,
as defined in Equation 1. Using index sets I≤q̂0.2 and I>q̂0.8 as defined in Equations 3 and 4,
respectively, the quintile share ratio is estimated by

Q̂SR :=
∑

i∈I>q̂0.8
wixi∑

i∈I≤q̂0.2
wixi

. (8)

To estimate the quintile share ratio, the function qsr() is available.

R> qsr("eqIncome", weights = "rb050", data = eusilc)

Value:
[1] 3.970004

Relative median at-risk-of-poverty gap

The relative median at-risk-of-poverty gap (RMPG) is given by the difference between the
median equivalized disposable income of persons below the at-risk-of-poverty threshold and
the at-risk of poverty threshold itself, expressed as a percentage of the at-risk-of-poverty
threshold.
For the estimation of the relative median at-risk-of-poverty gap from a sample, let ÂRPT
be the estimated at-risk-of-poverty threshold according to Equation 6, and let I

<ÂRP T
be
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an index set of persons with an equivalized disposable income below the estimated at-risk-
of-poverty threshold as defined in Equation 2. Using this index set, define x

<ÂRP T
:=

(xi)i∈I
<ÂRP T

and w
<ÂRP T

:= (wi)i∈I
<ÂRP T

. Furthermore, let q̂0.5(x
<ÂRP T

, w
<ÂRP T

) be the
corresponding weighted median according to the definition in Equation 1. Then the relative
median at-risk-of-poverty gap is estimated by

R̂MPG =
ÂRPT − q̂0.5(x

<ÂRP T
, w

<ÂRP T
)

ÂRPT
· 100. (9)

The relative median at-risk-of-poverty gap is implemented in the function rmpg().

R> rmpg("eqIncome", weights = "rb050", data = eusilc)

Value:
[1] 18.9286

Threshold:
[1] 10859.24

Gini coefficient

The Gini coefficient is defined as the relationship of cumulative shares of the population
arranged according to the level of equivalized disposable income, to the cumulative share of
the equivalized total disposable income received by them.
Mathematically speaking, the Gini coefficient is estimated from a sample by

Ĝini := 100

2∑n
i=1

(
wixi

∑i
j=1 wj

)
−
∑n

i=1 w 2
i xi

(∑n
i=1 wi)

∑n
i=1 (wixi)

− 1

 . (10)

For estimating the Gini coefficient, the function gini() can be used.

R> gini("eqIncome", weights = "rb050", data = eusilc)

Value:
[1] 26.48962
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3.3. The gender pay gap

Probably the most important indicator derived from the SES data is the gender pay gap
(GPG). The calculation of the gender pay gap is based on each person’s hourly earnings,
which are given by the gross monthly earnings from employment divided by the number of
hours usually worked per week in employment during 4.33 weeks. The gender pay gap in
unadjusted form is then defined as the difference between average gross earnings of male
paid employees and of female paid employees divided by the earnings of male paid employees
(Eurostat 2004a). Further discussion on the gender pay gap in Europe can be found in, e.g.,
Beblot, Beniger, Heinze, and Laisney (2003).
For the following definitions, let x := (x1, . . . , xn)⊤ be the hourly earnings with x1 ≤ . . . ≤ xn,
where n is the number of observations. As in the previous sections, w := (wi, . . . , wn)⊤

denotes the corresponding sample weights. Then define the index set

IM := {i ∈ {1, . . . , n} : worked as least 1 hour per week ∧
(16 ≤ age ≤ 65) ∧ person is male},

and define IF analogously as the index set which differs from IM in the fact that it includes
females instead of males. With these index sets, the gender pay gap in unadjusted form is
estimated by

GPG(mean) =
(∑

i∈IM
wixi∑

i∈IM
wi

−
∑

i∈IF
wixi∑

i∈IF wi

)/ ∑
i∈IM

wixi∑
i∈IM

wi
. (11)

The function gpg() is implemented in laeken to estimate the gender pay gap.

R> gpg("earningsHour", gender = "sex", weigths = "weights",
+ data = ses)

Value:
[1] 0.2517759

While Eurostat (2004a) proposes the weighted mean as a measure for the average in the
definition of the gender pay gap, the U.S. Census Bureau uses the weighted median to better
reflect the average in skewed earnings distributions (see, e.g., Weinberg 2007). In this case,
the estimate of the gender pay gap in unadjusted form changes to

GPG(med) = q̂0.5(xIM
) − q̂0.5(xIF

)
q̂0.5(xIM

) , (12)

where xIM
:= (xi)i∈IM

and xIF
:= (xi)i∈IF

.
It should be noted that even though Eurostat proposes to estimate the gender pay gap via
weighted means, Statistics Austria for example uses the variant based on weighted medians
as well.
In function gpg(), using the weighted median rather than the weighted mean can be specified
via the method argument.

R> gpg("earningsHour", gender = "sex", weigths = "weights",
+ data = ses, method = "median")
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Value:
[1] 0.2298387

4. Basic design and core functionality
This section discusses the basic design of package laeken and its core functions for the esti-
mation of indicators.

4.1. Indicators and class structure
Small examples for computing the social exclusion and poverty indicators with package laeken
were already shown in Section 3. These functions are now discussed in detail. As a reminder,
the following indicators are implemented in the package:

arpr() for the at-risk-of-poverty rate, as well as the dispersion around the at-risk-of-poverty
threshold.

qsr() for the quintile share ratio.

rmpg() for the relative median at-risk-of-poverty gap.

gini() for the gini coefficient.

gpg() for the gender pay gap.

All these functions have a very similar interface and allow to compute point and variance es-
timates with a single command, even for different subdomains of the data. Most importantly,
the user can supply character strings specifying the household income via the first argument
and the sample weights via the weights argument. The data are then taken from the data
frame passed as the data argument.

R> gini("eqIncome", weights = "rb050", data = eusilc)

Value:
[1] 26.48962

Alternatively, the user can supply the data directly as vectors:

R> gini(eusilc$eqIncome, weights = eusilc$rb050)

Value:
[1] 26.48962

For a full list of arguments, the reader is referred to the R help page of the corresponding
function.
Package laeken follows an object-oriented design using S3 classes (Chambers and Hastie 1992).
Thus each of the above functions returns an object of a certain class for the respective indi-
cator. All those classes thereby inherit from the class "indicator".
Among other information, the basic class "indicator" contains the following components:
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value: the point estimate.

valueByStratum: a data frame containing the point estimates for each domain.

var: the variance estimate.

varByStratum: a data frame containing the variance estimates for each domain.

ci: the confidence interval.

ciByStratum: a data frame containing the confidence intervals for each domain.

All indicators inherit the components of class "indicator", as well as the methods that are
defined for this basic class, which has the advantage that code can be shared among the set
of indicators. However, each indicator also has its own class such that methods unique to the
indicator can be defined. Following a common convention for S3 classes, the classes for the
indicators have the same names as the functions for computing them. Hence the following
classes are implemented in package laeken:

• Class "arpr" with the following additional components:

p: the percentage of the weighted median used for the at-risk-of-poverty threshold.
threshold: the at-risk-of-poverty threshold.

• Class "qsr" with no additional components.

• Class "rmpg" with the following additional components:

threshold: the at-risk-of-poverty threshold.

• Class "gini" with no additional components.

• Class "gpg" with no additional components.

Furthermore, functions to test whether an object is a member of the basic class or one of the
subclasses are available. The function to test for the basic class is called is.indicator().
Similarly, the functions to test for the subclasses are called is.foo(), where foo is the name
of the corresponding class (e.g., is.arpr()).

4.2. Estimating the indicators in subdomains

One of the most important features of laeken is that indicators can easily be evaluated for
different subdomains. These can be regions, but also any other breakdown given by a cate-
gorical variable, for instance age categories or gender. All the user needs to do is to specify
such a categorical variable via the breakdown argument. Note that for the at-risk-of-poverty
rate and relative median at-risk-of-poverty gap, the same overall at-risk-of-poverty threshold
is used for all subdomains (see Eurostat 2004a, 2009).
In the following example, the overall estimate for the at-risk-of-poverty rate is computed
together with more regional estimates.
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R> a <- arpr("eqIncome", weights = "rb050", breakdown = "db040",
+ data = eusilc)
R> a

Value:
[1] 14.44422

Value by domain:
stratum value

1 Burgenland 19.53984
2 Carinthia 13.08627
3 Lower Austria 13.84362
4 Salzburg 13.78734
5 Styria 14.37464
6 Tyrol 15.30819
7 Upper Austria 10.88977
8 Vienna 17.23468
9 Vorarlberg 16.53731

Threshold:
[1] 10859.24

4.3. Extracting information using the subset() method

If estimates of an indicator have been computed for several subdomains, extracting a subset
of the results for some domains of particular interest can be done with the corresponding
subset() method. For example, the following command extracts the estimates of the at-risk-
of-poverty rate for the regions Lower Austria and Vienna from the object computed above.

R> subset(a, strata = c("Lower Austria", "Vienna"))

Value:
[1] 14.44422

Value by domain:
stratum value

3 Lower Austria 13.84362
8 Vienna 17.23468

Threshold:
[1] 10859.24

It is thereby worth pointing out that not every indicator needs its own subset() method due
to inheritance from the basic class "indicator".
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5. Robust estimation
In economic data, variables such as income are typically heavy-tailed and may contain outliers.
To identify extreme outliers, we model heavy tails with a Pareto distribution. In the survey
setting, the upper tail of the population values are assumed to follow a Pareto distribution.
The laeken package includes recently developed methods of Alfons, Templ, and Filzmoser
(2013b) that allow sampling weights to be incorporated into the Pareto model estimation. In
the remainder of the section, we briefly outline the methodology and demonstrate how it can
be implemented with the laeken package.

5.1. Pareto distribution

The Pareto distribution is defined in terms of its cumulative distribution function

Fθ(x) = 1 −
(

x

x0

)−θ

, x ≥ x0, (13)

where x0 > 0 is the scale parameter and θ > 0 is the shape parameter (Kleiber and Kotz
2003). Furthermore, its density function is given by

fθ(x) = θxθ
0

xθ+1 , x ≥ x0. (14)

Clearly, the Pareto distribution is a highly right-skewed distribution with a heavy tail.
In Pareto tail modeling, the cumulative distribution function on the whole range of x is then
modeled as

F (x) =
{

G(x), if x ≤ x0,
G(x0) + (1 − G(x0))Fθ(x), if x > x0,

(15)

where G is an unknown distribution function (Dupuis and Victoria-Feser 2006). For a given
survey sample, let x = (x1, . . . , xn)⊤ be the observed values of the variable of interest with
x1 ≤ . . . ≤ xn and w := (wi, . . . , wn)⊤ the corresponding sample weights, where n denotes
the total number of observations. In addition, let k denote the number of observations to be
used for tail modeling. Note that the estimation of x0 and k directly correspond with each
other. If k is fixed, the threshold is estimated by x̂0 = xn−k. If in turn an estimate x̂0 is
obtained, k is given by the number of observations that are larger than x̂0.
In this section, we focus on the EU-SILC example data, where the equivalized disposable
income is the main variable of interest. To illustrate the robustness of the presented methods,
we replace the equivalized disposable income of the household with the highest income with
a large outlier. Note that the resulting income vector is stored in a new variable.

R> hID <- eusilc$db030[which.max(eusilc$eqIncome)]
R> eqIncomeOut <- eusilc$eqIncome
R> eqIncomeOut[eusilc$db030 == hID] <- 10000000

Moreover, since the equivalized disposable income is a form of household income, the Pareto
distribution needs to be modeled on the household level rather than the personal level. Thus
we create a data set that only contains the equivalized disposable income with the outlier and
the sample weights on the household level.
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R> keep <- !duplicated(eusilc$db030)
R> eusilcH <- data.frame(eqIncome=eqIncomeOut, db090=eusilc$db090)[keep,]

5.2. Pareto quantile plot and finding the threshold

The first step in any practical analysis should be to explore the data with visualization
techniques. For our purpose, the Pareto quantile plot is a powerful tool to check whether the
Pareto model is appropriate. The plot was introduced by Beirlant, Vynckier, and Teugels
(1996) for the case without sample weights, and adapted to take sample weights into account
by Alfons et al. (2013b).
The idea behind the Pareto quantile plot is that under the Pareto model, there exists a linear
relationship between the logarithms of the observed values and the quantiles of the standard
exponential distribution. For survey samples, the observed values are therefore plotted against
the quantities

− log
(

1 −
∑i

j=1 wj∑n
j=1 wj

n

n + 1

)
, i = 1, . . . , n. (16)

When all sample weights are equal, the correction factor n/(n + 1) ensures that Equation 16
reduces to the theoretical quantiles taken on the n inner grid points from n + 1 equally sized
subsets of the interval [0, 1] (see Alfons et al. 2013b, for details).
In package laeken, the Pareto quantile plot is implemented in the function paretoQPlot().
Figure 1 shows the resulting plot for the EU-SILC example data on the household level. Since
the tail of the data forms almost a straight line, the Pareto tail model is suitable for the data
at hand.
Moreover, Figure 1 illustrates the two main advantages that make the Pareto quantile plot
so powerful. First, nonrepresentative outliers (i.e., extremely large observations that deviate
from the Pareto model) are clearly visible. In our example, the outlier that we introduced
into the data set is located far away from the rest of the data in the top right corner of the
plot. Second, the leftmost point of a fitted line in the tail of the data can be used as an
estimate of the threshold x0 in the Pareto model, i.e., the scale parameter of fitted Pareto
distribution. The slope of the fitted line is then in turn an estimate of 1/θ, the reciprocal of
the shape parameter. A disadvantage of this graphical method to determine the parameters
of the fitted Pareto distribution is of course that it is not very exact.
Nevertheless, the function paretoQPlot() allows the user to select the threshold in the Pareto
model interactively by clicking on a data point. Information on the selected threshold is
thereby printed on the R console. This process can be repeated until the user terminates
the interactive session, typically by a secondary mouse click. Then the selected threshold is
returned as an object of class "paretoScale", which consists of the component x0 for the
threshold (scale parameter) and the component k for the number of observations in the tail
(i.e., larger than the threshold).

Van Kerm’s rule of thumb

For EU-SILC data, Van Kerm (2007) developed a formula for the threshold x0 in the Pareto
model that has more of a rule-of-thumb nature. It is given by

x̂0 := min(max(2.5x̄, q̂0.98), q̂0.97), (17)
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R> paretoQPlot(eusilcH$eqIncome, w = eusilcH$db090)
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Figure 1: Pareto quantile plot for the EU-SILC example data on the household level with the
largest observation replaced by an outlier.

where x̄ is the weighted mean, and q̂0.98 and q̂0.97 are weighted quantiles as defined in Equa-
tion 1. It is important to note that this formula is designed specifically for the equivalized
disposable income in EU-SILC data and can withstand a small number of nonrepresentative
outliers.
In laeken, the function paretoScale() provides functionality for estimating the threshold via
Van Kerm’s formula. Its argument w can be used to supply sample weights.

R> ts <- paretoScale(eusilcH$eqIncome, w = eusilcH$db090)
R> ts

Threshold: 48459.43
Number of observations in the tail: 119

The estimated threshold is again returned as an object of class "paretoScale".

5.3. Estimation of the shape parameter

Once the threshold for the Pareto model is determined, the shape parameter θ can be es-
timated via the points over threshold method, i.e., by fitting the distribution to the k data
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points that are larger than the threshold. Since our aim is to identify extreme outliers that
deviate from the Pareto model, the shape parameter needs to be estimated in a robust way.

Integrated squared error estimator
The integrated squared error (ISE) criterion was first introduced by Terrell (1990) as a more
robust alternative to maximum likelihood estimation. Vandewalle, Beirlant, Christmann, and
Hubert (2007) proposed to use this criterion in the context of Pareto tail modeling, but they
do not consider sample weights. However, the Pareto distribution is modeled in terms of the
relative excesses

yi := xn−k+i

xn−k
, i = 1, . . . , k. (18)

Now the density function of the Pareto distribution for the relative excesses is approximated
by

fθ(y) = θy−(1+θ). (19)
With this model density, the integrated squared error criterion can be written as

θ̂ = arg min
θ

[∫
f2

θ (y)dy − 2E(fθ(Y ))
]

, (20)

see Vandewalle et al. (2007). For survey samples, Alfons et al. (2013b) propose to use the
weighted mean as an estimator of E(fθ(Y )) to obtain the weighted integrated squared error
(wISE) estimator:

θ̂wISE = arg min
θ

[∫
f2

θ (y)dy − 2∑k
i=1 wn−k+i

k∑
i=1

wn−k+ifθ(yi)
]

. (21)

The wISE estimator can be computed using the function thetaISE(). The arguments k and
x0 are available to supply either the number of observations in the tail or the threshold, and
sample weights can be supplied via the argument w.

R> thetaISE(eusilcH$eqIncome, k = ts$k, w = eusilcH$db090)

[1] 3.993801

R> thetaISE(eusilcH$eqIncome, x0 = ts$x0, w = eusilcH$db090)

[1] 3.993801

Partial density component estimator
Following the observation by Scott (2004) that fθ in the ISE criterion does not need to
be a real density, Vandewalle et al. (2007) proposed to minimize the ISE criterion based
on an incomplete density mixture model ufθ instead. Alfons et al. (2013b) generalized their
estimator to take sample weights into account, yielding the weighted partial density component
(wPDC) estimator

θ̂wPDC = arg min
θ

[
u2
∫

f2
θ (y)dy − 2u∑k

i=1 wn−k+i

k∑
i=1

wn−k+ifθ(yi)
]

(22)
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with

û = 1∑k
i=1 wn−k+i

k∑
i=1

wn−k+ifθ̂(yi)
/∫

f2
θ̂
(y)dy. (23)

Based on extensive simulation studies, Alfons et al. (2013b) conclude that the wPDC estimator
is favorable over the wISE estimator due to better robustness properties.
The function thetaPDC() is implemented in package laeken to compute the wPDC estimator.
As before, it is necessary to supply either the number of observations in the tail via the
argument k, or the threshold via the argument x0. Sample weights can be supplied using the
argument w.

R> thetaPDC(eusilcH$eqIncome, k = ts$k, w = eusilcH$db090)

[1] 4.132596

R> thetaPDC(eusilcH$eqIncome, x0 = ts$x0, w = eusilcH$db090)

[1] 4.132596

5.4. Robust estimation of the indicators via Pareto tail modeling

The basic idea for robust estimation of the indicators is to first detect nonrepresentative
outliers based on the Pareto model. Afterwards their influence on the indicators is reduced
by either downweighting the outliers and recalibrating the remaining observations, or by
replacing the outlying values with values from the fitted distribution. The main advantage of
this general approach is that it can be applied to any indicator.
With the fitted Pareto distribution Fθ̂, nonrepresentative outliers can now be detected as
observations being larger than a certain F −1

θ̂
(1 − α) quantile. From extensive simulation

studies (Hulliger et al. 2011; Alfons et al. 2013b), α = 0.005 or α = 0.01 are seem suitable
choices for this tuning parameter. Then the following approaches are implemented in laeken
to reduce the influence of the outliers:

Calibration of nonrepresentative outliers (CN): As nonrepresentative outliers are con-
sidered to be somewhat unique to the population data, the sample weights of the cor-
responding observations are set to 1. The weights of the remaining observations are
adjusted accordingly by calibration (see, e.g., Deville, Särndal, and Sautory 1993).

Replacement of nonrepresentative outliers (RN): The outliers are replaced by values
drawn from the fitted distribution Fθ̂, thereby preserving the order of the original values.

Shrinkage of nonrepresentative outliers (SN): The outliers are shrunken to the theo-
retical quantile F −1

θ̂
(1 − α) used for outlier detection.

A more mathematical formulation and further details on the CN and RN approaches can
be found in Alfons et al. (2013b), who advocate the CN approach in combination with the
wPDC estimator for fitting the Pareto distribution.
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R> plot(fit)
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Figure 2: Pareto quantile plot for the EU-SILC example data with additional diagnostic
information on the fitted distribution and any detected outliers.

For a practical analysis with package laeken, let us first revisit the estimation of the shape
parameter. Rather than applying a function such as thetaPDC() directly as in the previous
section, the function paretoTail() should be used to fit the Pareto distribution to the upper
tail of the data. It returns an object of class "paretoTail", which contains all necessary
information for further analysis with one of the approaches described above.

R> fit <- paretoTail(eqIncomeOut, k = ts$k, w = eusilc$db090,
+ groups = eusilc$db030)

Note that the household IDs are supplied via the argument groups such that the Pareto
distribution is fitted on the household level rather than the individual level. By default, the
wPDC is used to estimate the shape parameter, but other estimators can be specified via the
method argument. In addition, the tuning parameter α for outlier detection can be supplied
as argument alpha.
Moreover, the plot() method for "paretoTail" objects produces a Pareto quantile plot (see
Section 5.2) with additional diagnostic information. Figure 2 contains the resulting plot for
the object computed above. The lower horizontal dotted line corresponds to the estimated
threshold x̂0, whereas the slope of the solid grey line is given by the reciprocal of the estimated
shape parameter θ̂. Furthermore, the upper horizontal dotted line represents the theoretical
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quantile used for outlier detection. In this example, the threshold seems somewhat too high.
Nevertheless, the estimate of the shape parameter is accurate and the cutoff point for outlier
detection is appropriate, resulting in correct identification of the outlier that we added to the
data set.
For downweighting nonrepresentative outliers, the function reweightOut() is available. It
returns a vector of the recalibrated weights. In the command below, we use regional infor-
mation as auxiliary variables for calibration. The function calibVars() thereby transforms
a factor into a matrix of binary variables. The returned recalibrated weights are then simply
used to estimate the Gini coefficient with function gini().

R> w <- reweightOut(fit, calibVars(eusilc$db040))
R> gini(eqIncomeOut, w)

Value:
[1] 26.45973

To replace the nonrepresentative outliers with values drawn from the fitted distribution, the
function replaceOut() is implemented. For reproducible results, the seed of the random
number generator is set beforehand. The returned income vector is then supplied to gini()
to estimate the Gini coefficient.

R> set.seed(123)
R> eqIncomeRN <- replaceOut(fit)
R> gini(eqIncomeRN, weights = eusilc$rb050)

Value:
[1] 26.4645

Similarly, the function shrinkOut() can be used to shrink the nonrepresentative outliers to
the theoretical quantile used for outlier detection.

R> eqIncomeSN <- shrinkOut(fit)
R> gini(eqIncomeSN, weights = eusilc$rb050)

Value:
[1] 26.48831

All three robust estimates are very close to the original value before the outlying household
had been introduced (see Section 3.2). For comparison, we compute the standard estimate of
Gini coefficient with the income vector including the outlying household.

R> gini(eqIncomeOut, weights = eusilc$rb050)

Value:
[1] 29.24333
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Clearly, the standard estimate shows an unreasonably large influence of only one outlying
household, illustrating the need for the robust methods.

6. Variance estimation
The laeken package uses bootstrap techniques for estimating the variance of complex survey
indicators. Bootstrap methods in general provide better estimates for nonsmooth estimators
than other other resampling techniques such as jackknifing or balanced repeated replication
(e.g., Bruch, Münnich, and Zins 2011). The naive bootstrap in laeken is quite fast to compute
and provides reasonable estimates whenever there is not much variation in the sample weights,
which is for example typically the case for EU-SILC data. If there is larger variation among
the sample weights, a calibrated bootstrap should be applied. We describe both approaches
and their implementation in the following sections.

6.1. Naive bootstrap

Let τ denote a certain indicator of interest and let X := (x1, . . . , xn)⊤ be a survey sample
with n observations. Then the naive bootstrap algorithm for estimating the variance and
confidence interval of an estimate τ̂(X) of the indicator can be summarized as follows:

1. Draw R independent bootstrap samples X∗
1, . . . , X∗

R from X. For stratified sampling
designs, resampling is performed within each stratum independently.

2. Compute the bootstrap replicate estimates τ̂∗
r := τ̂(X∗

r) for each bootstrap sample X∗
r ,

r = 1, . . . , R, taking the sample weights from the respective bootstrap samples into
account.

3. Estimate the variance V (τ̂) by the variance of the R bootstrap replicate estimates:

V̂ (τ̂) := 1
R − 1

R∑
r=1

(
τ̂∗

r − 1
R

R∑
s=1

τ̂∗
s

)2

. (24)

4. Estimate the confidence interval at confidence level 1−α by one of the following methods
(for details, see Davison and Hinkley 1997):

Percentile method:
[
τ̂∗

((R+1) α
2 ), τ̂∗

((R+1)(1− α
2 ))

]
, as suggested by Efron and Tibshirani

(1993).
Normal approximation: τ̂ ± z1− α

2
· V̂ (τ̂)1/2 with z1− α

2
= Φ−1(1 − α

2 ).

Basic bootstrap method:
[
2τ̂ − τ̂∗

((R+1)(1− α
2 )), 2τ̂ − τ̂∗

((R+1) α
2 )

]
.

For the percentile and the basic bootstrap method, τ̂∗
(1) ≤ . . . ≤ τ̂∗

(R) denote the order
statistics of the bootstrap replicate estimates.

With package laeken, variance estimates and confidence intervals can easily be included in
the estimation of an indicator. It is only necessary to specify a few more arguments in the call
to the function computing the indicator. The argument var is available to specify the type
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of variance estimation, although only the bootstrap is currently implemented. Furthermore,
the significance level α for the confidence intervals can be supplied via the argument alpha
(the default is to use alpha=0.05 for 95% confidence intervals). Additional arguments are
then passed to the underlying function for variance estimation.

R> arpr("eqIncome", weights = "rb050", design = "db040", cluster = "db030",
+ data = eusilc, var = "bootstrap", bootType = "naive",
+ seed = 1234)

Value:
[1] 14.44422

Variance:
[1] 0.2293815

Confidence interval:
lower upper

13.52624 15.51154

Threshold:
[1] 10859.24

For the bootstrap, the function bootVar() is called internally for variance and confidence
interval estimation. Important arguments are design and cluster for specifying the strata
and clusters in the sampling design, R for supplying the number of bootstrap replicates,
bootType for specifying the type of bootstrap estimator, and ciType for specifying the type
of confidence interval. For reproducibility, the seed of the random number generator can be
set via the argument seed.
An important feature of package laeken is that indicators can be estimated for different
subdomains with a single command, which still holds for variance and confidence interval
estimation. As for point estimation, only the breakdown argument needs to be specified (cf.
the example in Section 4.2).

6.2. Calibrated bootstrap

In practice, the initial sample weights from the sampling design are often adjusted by cali-
bration, for instance to account for non-response or to ensure that the sums of the sample
weights for all observations within certain subgroups equal the respective known population
sizes. However, drawing a bootstrap sample then has the effect that the sample weights in the
bootstrap sample no longer sum up to the correct values. As a remedy, the sample weights
of each bootstrap sample should be recalibrated. For better accuracy at a higher computa-
tional cost, the calibrated bootstrap algorithm extends the naive bootstrap algorithm from the
previous section by adding the following step between Steps 1 and 2:

1b. Calibrate the sample weights for each bootstrap sample X∗
r , r = 1, . . . , R (see, e.g.,

Deville and Särndal 1992; Deville et al. 1993, for details on calibration).
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Using laeken, the function call for including variance and confidence intervals via the cali-
brated bootstrap is very similar to its counterpart for the naive bootstrap. A matrix of auxil-
iary calibration variables needs to be supplied via the argument X. The function calibVars()
can thereby by used to transform a factor into a matrix of binary variables. In the example
below, information on region and gender is used for calibration. Furthermore, the argument
totals can be used to supply the corresponding population totals. If the totals argument
is omitted, the population totals are computed from the sample weights of the original sam-
ple. This follows the assumption that those weights are already calibrated on the supplied
auxiliary variables.

R> aux <- cbind(calibVars(eusilc$db040), calibVars(eusilc$rb090))
R> arpr("eqIncome", weights = "rb050", design = "db040", cluster = "db030",
+ data = eusilc, var = "bootstrap", X = aux, seed = 1234)

Value:
[1] 14.44422

Variance:
[1] 0.2332389

Confidence interval:
lower upper

13.52377 15.52117

Threshold:
[1] 10859.24

7. Conclusions
In this paper, we demonstrate the use of the R package laeken for computing point and
variance estimates of indicators from complex surveys. Various commonly used indicators on
social exclusion and poverty are thereby implemented. Their estimation is made easy with
the package, as the corresponding functions allow to compute point and variance estimates
with a single command, even for different subdomains of the data.
In addition, we illustrate with a simple example that some of the indicators are highly in-
fluenced by extreme outliers in the data (cf. Hulliger and Schoch 2009; Alfons et al. 2013b).
As a remedy, a general procedure for robust estimation of the indicators is implemented in
laeken. The procedure is based on fitting a Pareto distribution to the upper tail of the data
and has the advantage that it can be applied to any indicator. A diagnostic plot thereby
allows to check whether the Pareto tail model is appropriate for the data at hand.
Concerning variance estimation, further techniques for complex survey samples are available in
R through other packages. For instance, package EVER (Zardetto 2012) provides functionality
for the delete-a-group jackknife. Other methods such as balanced repeated replication are
implemented in package survey (Lumley 2004, 2012). The incorporation of those packages
for additional variance estimation procedures is therefore considered for future work.
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