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Abstract

This package vignette is an up-to-date version of Alfons, Croux, and Filzmoser (2016),
published in the Austrian Journal of Statistics.

An intuitive measure of association between two multivariate data sets can be defined
as the maximal value that a bivariate association measure between any one-dimensional
projections of each data set can attain. Rank correlation measures thereby have the ad-
vantage that they combine good robustness properties with good efficiency. The software
package ccaPP provides fast implementations of such maximum association measures for
the statistical computing environment R. We demonstrate how to use ccaPP to compute
the maximum association measures, as well as how to assess their significance via permu-
tation tests.
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1. Introduction
Projection pursuit allows to introduce intuitive and therefore appealing association measures
between two multivariate data sets. Suppose that the data sets X and Y consist of p and q
variables, respectively. A measure of multivariate association between X and Y can be defined
by looking for linear combinations Xα and Y β having maximal association. Expressed in
mathematical terms, we define an estimator

ρ̂R(X, Y ) = max
∥α∥=1,∥β∥=1

R̂(Xα, Y β), (1)

where R̂ is an estimator of a bivariate association measure R such as the Pearson correlation,
or the Spearman or Kendall rank correlation. Using the projection pursuit terminology, R̂ is
the projection index to maximize. The projection directions corresponding to the maximum
association are called weighting vectors and are estimated by

(α̂R(X, Y ), β̂R(X, Y )) = argmax
∥α∥=1,∥β∥=1

R̂(Xα, Y β). (2)

Alfons, Croux, and Filzmoser (2017) developed the alternate grid algorithm for the compu-
tation of such maximum association estimators and studied their theoretical properties for
various association measures. It turns out that the Spearman and Kendall rank correlation
yield maximum association estimators with good robustness properties and good efficiency.
This paper is a companion paper to Alfons et al. (2017) that demonstrates how to apply
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the maximum association estimators in the statistical environment R (R Core Team 2015)
using the add-on package ccaPP (Alfons 2016). The package is freely available on CRAN
(Comprehensive R Archive Network, http://CRAN.R-project.org).
Note that using the Pearson correlation as the projection index of the maximum associa-
tion estimator corresponds to the first step of canonical correlation analysis (CCA; see, e.g.,
Johnson and Wichern 2002), hence the package name ccaPP. Since CCA is a widely applied
statistical technique, various algorithms and extensions are implemented in R packages on
CRAN. Two important examples are briefly discussed in the following. The package CCA
(González, Déjean, Martin, and Baccini 2008; González and Déjean 2012) extends the built-in
R function cancor() with additional numerical and graphical output. Moreover, it provides
a regularized version of CCA for data sets containing a large number of variables. Bayesian
models and inference methods for CCA are implemented in the package CCAGFA (Klami,
Virtanen, and Kaski 2013; Virtanen, Leppaaho, and Klami 2015).
The remainder of the paper is organized as follows. In Section 2, the design and imple-
mentation of the package are briefly discussed. Section 3 demonstrates how to compute the
maximum association estimators, and Section 4 illustrates how to test for their significance.
A comparison of computation times is given in Section 5. The final Section 6 concludes the
paper.

2. Design and implementation
Various bivariate association measures and the alternate grid algorithm for the maximum
association estimators are implemented in C++, and integrated into R via the package
RcppArmadillo (Eddelbuettel and Sanderson 2014; Eddelbuettel, François, and Bates 2015).
The following bivariate association measures are available in the package ccaPP:

corPearson(): Pearson correlation

corSpearman(): Spearman rank correlation

corKendall(): Kendall rank correlation, also known as Kendall’s τ

corQuadrant(): Quadrant correlation (Blomqvist 1950)

corM(): Association based on a bivariate M-estimator of location and scatter with a Huber
loss function (Huber and Ronchetti 2009)

It should be noted that these are barebones implementations without proper handling of
missing values. Hence the first three functions come with a substantial speed gain compared
to R’s built-in function cor(). Moreover, the fast O(n log(n)) algorithm for the Kendall
correlation (Knight 1966) is implemented in corKendall(), whereas cor() uses the naive
O(n2) algorithm.
The alternate grid algorithm for the maximum association estimators is implemented in the
function maxCorGrid(). Any of the bivariate association measures above can be used as
projection index, with the Spearman rank correlation being the default. We do not recommend
to use the quadrant correlation since its influence function is not smooth, which may result

http://CRAN.R-project.org
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in unstable estimates of the weighting vectors. For more details on the theoretical properties
of the maximum association estimators, the reader is referred to Alfons et al. (2017).
To assess the significance of a maximum association estimate, a permutation test is provided
via the function permTest(). Parallel computing to increase computational performance is
implemented via the package parallel, which is part of R since version 2.14.0.

3. Maximum association measures
In this section, we show how to apply the function maxCorGrid() from the package ccaPP
to compute the maximum association estimators. We thereby use the classic diabetes data
(Andrews and Herzberg 1985, page 215), which are included as example data in the package.
First we load the package and the data. All measurements are taken for a group of n = 76
persons.

library("ccaPP")
data("diabetes")
x <- diabetes$x
y <- diabetes$y

Component x consists of p = 2 variables measuring relative weight and fasting plasma glucose,
while component y consists of q = 3 variables measuring glucose intolerance, insulin response
to oral glucose and insulin resistance. It is of medical interest to establish a relation between
the two data sets.
The function maxCorGrid() by default uses the Spearman rank correlation as projection index.

spearman <- maxCorGrid(x, y)
spearman
##
## Call:
## maxCorGrid(x = x, y = y)
##
## Maximum correlation:
## [1] 0.5346995

The estimated weighting vectors can be accessed through components a and b of the returned
object, respectively.

spearman$a
## [1] -0.2560459 0.9666646
spearman$b
## [1] 9.999999e-01 3.671395e-04 4.571134e-05

With the argument method, another bivariate association measure can be set as projection
index, e.g., the Kendall rank correlation, the M-association or the Pearson correlation.
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maxCorGrid(x, y, method = "kendall")
##
## Call:
## maxCorGrid(x = x, y = y, method = "kendall")
##
## Maximum correlation:
## [1] 0.3912216
maxCorGrid(x, y, method = "M")
##
## Call:
## maxCorGrid(x = x, y = y, method = "M")
##
## Maximum correlation:
## [1] 0.5328512
maxCorGrid(x, y, method = "pearson")
##
## Call:
## maxCorGrid(x = x, y = y, method = "pearson")
##
## Maximum correlation:
## [1] 0.4887634

Note that the Spearman and Kendall rank correlation estimate different population quantities
than the Pearson correlation. Thus the above values of the different maximum association
measures are not directly comparable. The argument consistent can be used for the former
two methods to get consistent estimates of the maximum correlation under normal distribu-
tions.

maxCorGrid(x, y, consistent = TRUE)
##
## Call:
## maxCorGrid(x = x, y = y, consistent = TRUE)
##
## Maximum correlation:
## [1] 0.5526498
maxCorGrid(x, y, method = "kendall", consistent = TRUE)
##
## Call:
## maxCorGrid(x = x, y = y, method = "kendall", consistent = TRUE)
##
## Maximum correlation:
## [1] 0.5765741

The M-association measure is consistent at the normal model and estimates the same popu-
lation quantity as the Pearson correlation.
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4. Permutation tests
To assess the significance of maximum association estimates, permutation tests can be per-
formed with the function permTest(). The number of random permutations to be used can
be set with the argument R, which defaults to 1000. On machines with multiple processor
cores, only the argument nCores needs to be set to take advantage of parallel computing in
order to reduce computation time. If nCores is set to NA, all available processor cores are
used.
In the examples in this section, we use 2 processor cores. To keep computation time minimal,
we set the number of random permutations to 100. Furthermore, we set the seed of the random
number generator via the argument seed for reproducibility of the results. Since we employ
parallel computing, ccaPP uses random number streams (L’Ecuyer, Simard, Chen, and Kelton
2002) from the package parallel rather than the default R random number generator.

permTest(x, y, R = 100, nCores = 2, seed = 2016)
##
## Permutation test for no association
##
## r = 0.534699, p-value = 0.000000
## R = 100 random permuations
## Alternative hypothesis: true maximum correlation is not equal to 0

Again, the Spearman rank correlation is used as projection index by default. A different
bivariate association measure can be specified via the argument method, which is passed
down to the function maxCorGrid().

permTest(x, y, R = 100, method = "kendall", nCores = 2, seed = 2016)
##
## Permutation test for no association
##
## r = 0.391222, p-value = 0.000000
## R = 100 random permuations
## Alternative hypothesis: true maximum correlation is not equal to 0
permTest(x, y, R = 100, method = "M", nCores = 2, seed = 2016)
##
## Permutation test for no association
##
## r = 0.532851, p-value = 0.000000
## R = 100 random permuations
## Alternative hypothesis: true maximum correlation is not equal to 0
permTest(x, y, R = 100, method = "pearson", nCores = 2, seed = 2016)
##
## Permutation test for no association
##
## r = 0.488763, p-value = 0.000000
## R = 100 random permuations
## Alternative hypothesis: true maximum correlation is not equal to 0
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Clearly, all four tests strongly reject the null hypothesis of no association between the two
data sets.
Since the focus of ccaPP is on robustness, we introduce an outlier into the diabetes data
as in Taskinen, Kankainen, and Oja (2003). More precisely, we replace the value 0.81 of the
first observation of variable glucose intolerance by 8.1, i.e., by a simple shift of the comma.

y[1, "GlucoseIntolerance"] <- 8.1

Now we repeat the four permutation tests with the contaminated data.

permTest(x, y, R = 100, nCores = 2, seed = 2016)
##
## Permutation test for no association
##
## r = 0.487536, p-value = 0.010000
## R = 100 random permuations
## Alternative hypothesis: true maximum correlation is not equal to 0
permTest(x, y, R = 100, method = "kendall", nCores = 2, seed = 2016)
##
## Permutation test for no association
##
## r = 0.361116, p-value = 0.000000
## R = 100 random permuations
## Alternative hypothesis: true maximum correlation is not equal to 0
permTest(x, y, R = 100, method = "M", nCores = 2, seed = 2016)
##
## Permutation test for no association
##
## r = 0.509973, p-value = 0.000000
## R = 100 random permuations
## Alternative hypothesis: true maximum correlation is not equal to 0
permTest(x, y, R = 100, method = "pearson", nCores = 2, seed = 2016)
##
## Permutation test for no association
##
## r = 0.267837, p-value = 0.350000
## R = 100 random permuations
## Alternative hypothesis: true maximum correlation is not equal to 0

The test based on the maximum Pearson correlation is highly influenced by the outlier and no
longer rejects the null hypothesis. The tests based on the maximum Spearman and Kendall
rank correlation, as well as the test based on maximum M-association, remain stable.

5. Computation times
This section analyzes the computation times of the methods implemented in ccaPP. All
computations are performed in R version 3.2.2 on a machine with an Intel Xeon X5670 CPU.
The computation times are recorded with the R package microbenchmark (Mersmann 2014).
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Table 1: Average computation time (in milliseconds) of the bivariate association measures in
base R and the package ccaPP.

Base R Package ccaPP
n Spearman Kendall Pearson Spearman Kendall Pearson M

100 0.20 0.40 0.08 0.03 0.03 0.01 0.11
1 000 0.41 18.73 0.08 0.18 0.16 0.01 0.32

10 000 3.38 1761.71 0.19 2.06 1.84 0.05 2.42
100 000 54.88 176431.15 1.34 25.21 22.46 0.41 27.42

First, we compare the barebones implementations of the Pearson, Spearman and Kendall
correlations (functions corPearson(), corSpearman() and corKendall() in ccaPP) with
their counterparts from the base R function cor(). We also include the M-association measure
from the function corM() in the comparison. The bivariate association measures are computed
for 10 random draws from a bivariate normal distribution with true correlation ρ = 0.5 and
sample size n = 100, 1 000, 10 000, 100 000. For each random sample, computation times from
10 independent runs are recorded.
Table 1 contains the average computation times of the bivariate association measures. Clearly,
the fast O(n log(n)) algorithm for the Kendall correlation (Knight 1966) in ccaPP is a huge
improvement over the naive O(n2) algorithm in base R. Time savings for the Spearman and
Pearson correlation are also substantial, considering that they are only due to a lack of missing
data handling. For the M-association, the computation time is somewhat higher than that of
the Spearman and Kendall correlation.
Since the projection pursuit algorithm for the maximum association measures involves com-
puting a large number of bivariate associations (see Alfons et al. 2017), the faster barebones
implementations are crucial to keep the computation of the maximum association feasible.
We employ the same procedure as above to record the computation time of the maximum
association measures, except that each of the random samples is drawn from a multivariate
normal distribution such that the true maximum correlation is ρ = 0.5 and the corresponding
weighting vectors are α = (1, 0, . . . , 0)′ and β = (1, 0, . . . , 0)′. The sample size is set to
n = 100, 1 000, 10 000, the dimension of X is p = 5, 10, 50, and the dimension of Y is q =
1, 5, 10, 50.
Inspired by canonical correlation analysis (CCA), we also compute other association measures
for comparison. In CCA, the first canonical correlation is given by the square root of the
largest eigenvalue of the matrix

Σ−1
XXΣXY Σ−1

Y Y ΣY X , (3)

where ΣXX = Cov(X), ΣY Y = Cov(Y ), ΣXY = Cov(X, Y ) and ΣY X = Σ′
XY (see, e.g.,

Johnson and Wichern 2002). This is of course identical to the maximum association measure
with the Pearson correlation as projection index. Other association measures are obtained by
plugging different scatter matrices into (3). However, such a measure is in general different
from the maximum association measure based on the corresponding bivariate association, with
the maximum association being much easier to interpret. Here we plug in scatter matrices
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Table 2: Average computation time (in seconds) of the maximum association measures in
package ccaPP, as well as association measures based on corresponding full correlation matrix.

Package ccaPP Full scatter matrix
n p q Spearman Kendall Pearson M Spearman Kendall Pearson MCD

100 5 1 0.014 0.011 0.001 0.036 0.001 0.005 0.001 0.020
100 5 5 0.073 0.049 0.006 0.244 0.002 0.010 0.001 0.038
100 10 1 0.030 0.023 0.003 0.088 0.002 0.012 0.001 0.044
100 10 5 0.114 0.083 0.012 0.473 0.002 0.021 0.001 0.075
100 10 10 0.180 0.107 0.021 0.658 0.003 0.037 0.001 0.130
100 50 1 0.174 0.137 0.047 0.641 0.007 0.224 0.003 0.926
100 50 5 0.588 0.429 0.365 5.777 0.008 0.259 0.003 1.096
100 50 10 0.692 0.435 0.426 8.249 0.009 0.307 0.003 1.348
100 50 50 1.257 0.824 0.993 33.368 0.013 0.839 0.005

1 000 5 1 0.189 0.152 0.005 0.219 0.002 0.324 0.001 0.075
1 000 5 5 1.143 0.961 0.035 1.280 0.003 0.860 0.001 0.143
1 000 10 1 0.408 0.342 0.018 0.532 0.004 1.034 0.001 0.165
1 000 10 5 1.837 1.620 0.072 2.239 0.005 1.890 0.001 0.271
1 000 10 10 2.567 2.145 0.110 3.693 0.006 3.320 0.001 0.459
1 000 50 1 2.285 2.055 0.293 3.567 0.019 21.126 0.005 2.805
1 000 50 5 8.728 7.611 1.188 14.019 0.020 24.544 0.006 3.264
1 000 50 10 10.264 8.661 1.271 16.524 0.024 29.184 0.006 3.938
1 000 50 50 21.192 16.785 3.448 39.227 0.038 80.656 0.011 14.740

10 000 5 1 1.933 1.895 0.043 1.472 0.018 32.153 0.002 0.115
10 000 5 5 12.136 10.695 0.251 8.958 0.036 85.527 0.004 0.214
10 000 10 1 4.783 4.113 0.140 3.223 0.032 102.857 0.003 0.234
10 000 10 5 19.922 19.365 0.539 17.111 0.043 188.259 0.004 0.369
10 000 10 10 32.188 24.658 0.856 22.533 0.063 330.891 0.006 0.618
10 000 50 1 28.747 26.078 3.150 29.440 0.153 2107.029 0.028 3.374
10 000 50 5 116.614 100.885 9.538 114.121 0.160 2448.142 0.032 3.917
10 000 50 10 134.916 103.590 10.014 123.863 0.179 2910.402 0.035 4.706
10 000 50 50 244.389 209.834 20.318 224.293 0.320 8045.749 0.082 16.556

corresponding to the Pearson, Spearman and Kendall correlation. For the Pearson correla-
tion, the corresponding scatter matrix is the sample covariance matrix. For the Spearman
and Kendall correlation, the scatter matrices are given by the respective pairwise associa-
tions multiplied with scale estimates of the corresponding variables. Furthermore, since a
multivariate M-estimator of the covariance matrix is not robust, we instead use the minimum
covariance determinant estimator (MCD; see Rousseeuw and Van Driessen 1999).
Table 2 lists average computation times for various values of n, p and q. The function
maxCorGrid() is thereby used with the default values for all control parameters of the al-
gorithm (see the corresponding R help file). For the maximum association measures, the
number of bivariate associations that have to be computed clearly takes a toll on computa-
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tion time compared to the association measures based on the full scatter matrices. Note that
the Kendall correlation is the exception, as the computation of the full scatter matrix uses R’s
built-in cor() function, and therefore the naive O(n2) algorithm. Also note that computing
the full MCD scatter matrix requires more observations than variables, i.e., n > p + q, hence
it cannot be computed for n = 100 and p = q = 50.
For the Pearson correlation, the projection pursuit algorithm to find the maximum associa-
tion cannot be recommended since the first canonical correlation is much faster to compute.
However, the focus of ccaPP is on the Spearman and Kendall rank correlation, for which
the maximum association measures are much more intuitive than the association measures
based on the full scatter matrix. In our opinion, the gain of easy interpretability outweighs
the increased computational cost. In any case, the maximum association measures are still
reasonably fast to compute for many problem sizes due to our C++ implementation.
It is also worth noting that the association measures based on a full scatter matrix require
the number of observations to be larger than the number of variables in each of the two data
sets, i.e., n > max(p, q). The maximum association measures do not have this limitation,
although computation time increases considerably in high dimensions.

6. Conclusions
The package ccaPP provides functionality for the statistical computing environment R to
compute intuitive measures of association between two data sets. These maximum association
measures seek the maximal value of a bivariate association measure between one-dimensional
projections of each data set. We recommend the maximum Spearman and Kendall rank
correlation measures because of their good robustness properties and efficiency. For details
on the theoretical properties of the estimators, as well as the alternate grid algorithm and
extensive numerical results, the reader is referred to Alfons et al. (2017).
Due to our C++ implementation, the maximum association measures are reasonably fast to
compute. The significance of maximum association estimates can be assessed via permutation
tests, which allow for parallel computing to decrease computation time. In addition, the
corresponding functions in ccaPP are easy to use.
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